3.545 \(\int \frac{1}{(a+b \cosh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=90 \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a+b \cosh ^{-1}(c x)}{b}\right )}{b^2 c}-\frac{\sqrt{c x-1} \sqrt{c x+1}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \]

[Out]

-((Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*(a + b*ArcCosh[c*x]))) + (Cosh[a/b]*CoshIntegral[(a + b*ArcCosh[c*x])/b]
)/(b^2*c) - (Sinh[a/b]*SinhIntegral[(a + b*ArcCosh[c*x])/b])/(b^2*c)

________________________________________________________________________________________

Rubi [A]  time = 0.323234, antiderivative size = 86, normalized size of antiderivative = 0.96, number of steps used = 5, number of rules used = 5, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5656, 5781, 3303, 3298, 3301} \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}-\frac{\sqrt{c x-1} \sqrt{c x+1}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])^(-2),x]

[Out]

-((Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(b*c*(a + b*ArcCosh[c*x]))) + (Cosh[a/b]*CoshIntegral[a/b + ArcCosh[c*x]])/(b
^2*c) - (Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]])/(b^2*c)

Rule 5656

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c
*x])^(n + 1))/(b*c*(n + 1)), x] - Dist[c/(b*(n + 1)), Int[(x*(a + b*ArcCosh[c*x])^(n + 1))/(Sqrt[-1 + c*x]*Sqr
t[1 + c*x]), x], x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1]

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx &=-\frac{\sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{c \int \frac{x}{\sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )} \, dx}{b}\\ &=-\frac{\sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{\cosh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}\\ &=-\frac{\sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\cosh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}-\frac{\sinh \left (\frac{a}{b}\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c}\\ &=-\frac{\sqrt{-1+c x} \sqrt{1+c x}}{b c \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}-\frac{\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )}{b^2 c}\\ \end{align*}

Mathematica [A]  time = 0.321973, size = 80, normalized size = 0.89 \[ \frac{\cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )-\sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\cosh ^{-1}(c x)\right )-\frac{b \sqrt{\frac{c x-1}{c x+1}} (c x+1)}{a+b \cosh ^{-1}(c x)}}{b^2 c} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])^(-2),x]

[Out]

(-((b*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))/(a + b*ArcCosh[c*x])) + Cosh[a/b]*CoshIntegral[a/b + ArcCosh[c*x]]
 - Sinh[a/b]*SinhIntegral[a/b + ArcCosh[c*x]])/(b^2*c)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 125, normalized size = 1.4 \begin{align*}{\frac{1}{c} \left ({\frac{1}{2\,b \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( -\sqrt{cx-1}\sqrt{cx+1}+cx \right ) }-{\frac{1}{2\,{b}^{2}}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\rm arccosh} \left (cx\right )+{\frac{a}{b}} \right ) }-{\frac{1}{2\,b \left ( a+b{\rm arccosh} \left (cx\right ) \right ) } \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) }-{\frac{1}{2\,{b}^{2}}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\rm arccosh} \left (cx\right )-{\frac{a}{b}} \right ) } \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*arccosh(c*x))^2,x)

[Out]

1/c*(1/2*(-(c*x-1)^(1/2)*(c*x+1)^(1/2)+c*x)/b/(a+b*arccosh(c*x))-1/2/b^2*exp(a/b)*Ei(1,arccosh(c*x)+a/b)-1/2/b
*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))/(a+b*arccosh(c*x))-1/2/b^2*exp(-a/b)*Ei(1,-arccosh(c*x)-a/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{c^{3} x^{3} +{\left (c^{2} x^{2} - 1\right )} \sqrt{c x + 1} \sqrt{c x - 1} - c x}{a b c^{3} x^{2} + \sqrt{c x + 1} \sqrt{c x - 1} a b c^{2} x - a b c +{\left (b^{2} c^{3} x^{2} + \sqrt{c x + 1} \sqrt{c x - 1} b^{2} c^{2} x - b^{2} c\right )} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right )} + \int \frac{c^{4} x^{4} - 2 \, c^{2} x^{2} +{\left (c^{2} x^{2} + 1\right )}{\left (c x + 1\right )}{\left (c x - 1\right )} +{\left (2 \, c^{3} x^{3} - c x\right )} \sqrt{c x + 1} \sqrt{c x - 1} + 1}{a b c^{4} x^{4} +{\left (c x + 1\right )}{\left (c x - 1\right )} a b c^{2} x^{2} - 2 \, a b c^{2} x^{2} + 2 \,{\left (a b c^{3} x^{3} - a b c x\right )} \sqrt{c x + 1} \sqrt{c x - 1} + a b +{\left (b^{2} c^{4} x^{4} +{\left (c x + 1\right )}{\left (c x - 1\right )} b^{2} c^{2} x^{2} - 2 \, b^{2} c^{2} x^{2} + 2 \,{\left (b^{2} c^{3} x^{3} - b^{2} c x\right )} \sqrt{c x + 1} \sqrt{c x - 1} + b^{2}\right )} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(c*x))^2,x, algorithm="maxima")

[Out]

-(c^3*x^3 + (c^2*x^2 - 1)*sqrt(c*x + 1)*sqrt(c*x - 1) - c*x)/(a*b*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*a*b*c^
2*x - a*b*c + (b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x - b^2*c)*log(c*x + sqrt(c*x + 1)*sqrt(c*x -
 1))) + integrate((c^4*x^4 - 2*c^2*x^2 + (c^2*x^2 + 1)*(c*x + 1)*(c*x - 1) + (2*c^3*x^3 - c*x)*sqrt(c*x + 1)*s
qrt(c*x - 1) + 1)/(a*b*c^4*x^4 + (c*x + 1)*(c*x - 1)*a*b*c^2*x^2 - 2*a*b*c^2*x^2 + 2*(a*b*c^3*x^3 - a*b*c*x)*s
qrt(c*x + 1)*sqrt(c*x - 1) + a*b + (b^2*c^4*x^4 + (c*x + 1)*(c*x - 1)*b^2*c^2*x^2 - 2*b^2*c^2*x^2 + 2*(b^2*c^3
*x^3 - b^2*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + b^2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b^{2} \operatorname{arcosh}\left (c x\right )^{2} + 2 \, a b \operatorname{arcosh}\left (c x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \operatorname{acosh}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*acosh(c*x))**2,x)

[Out]

Integral((a + b*acosh(c*x))**(-2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*arccosh(c*x))^2,x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)^(-2), x)